منابع مشابه
Weakly nonoscillatory schemes for scalar conservation laws
A new class of Godunov-type numerical methods (called here weakly nonoscillatory or WNO) for solving nonlinear scalar conservation laws in one space dimension is introduced. This new class generalizes the classical nonoscillatory schemes. In particular, it contains modified versions of MinMod and UNO. Under certain conditions, convergence and error estimates for WNO methods are proved.
متن کاملJet Schemes for Advection Problems
We present a systematic methodology to develop high order accurate numerical approaches for linear advection problems. These methods are based on evolving parts of the jet of the solution in time, and are thus called jet schemes. Through the tracking of characteristics and the use of suitable Hermite interpolations, high order is achieved in an optimally local fashion, i.e. the update for the d...
متن کاملHigh-Resolution Nonoscillatory Central Schemes for Hamilton-Jacobi Equations
In this paper, we construct second-order central schemes for multidimensional Hamilton–Jacobi equations and we show that they are nonoscillatory in the sense of satisfying the maximum principle. Thus, these schemes provide the first examples of nonoscillatory second-order Godunov-type schemes based on global projection operators. Numerical experiments are performed; L1/L∞-errors and convergence...
متن کاملSixth-order Weighted Essentially Nonoscillatory Schemes Based on Exponential Polynomials
The aim of this study is to develop a novel sixth-order weighted essentially non-oscillatory (WENO) finite difference scheme. To design new WENO weights, we present two important measurements: a discontinuity detector (at the cell boundary) and a smoothness indicator. The interpolation method is implemented by using exponential polynomials with tension parameters such that they can be tuned to ...
متن کاملNonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws
We construct, analyze, and implement a new nonoscillatory high-resolution scheme for two-dimensional hyperbolic conservation laws. The scheme is a predictor-corrector method which consists of two steps: starting with given cell averages, we first predict pointvalues which are based on nonoscillatory piecewise-linear reconstructions from the given cell averages; at the second corrector step, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monthly Weather Review
سال: 2008
ISSN: 1520-0493,0027-0644
DOI: 10.1175/2008mwr2451.1